Targeting “bad” B cells in multiple sclerosis
نویسندگان
چکیده
Laquinimod is an orally available quinoline 3carboxamide derivative drug studied in phase II and III clinical trials for relapsing-remitting multiple sclerosis (RRMS), systemic lupus erythematosus, and Crohn disease. Laquinimod has shown promise in RRMS clinical trials, and identifying the mechanism underlying its disease-modifying effects could help target it to the patient population where it would be most effective. Studies in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis (MS) have suggested that the drug may ameliorate disease by modulating innate and adaptive immune responses, for example via effects on macrophages/monocytes, dendritic cells (DCs), and T-helper (Th) cells. However, its key effector mechanisms and the cellular targets by which the drug ameliorates disease are still not fully resolved. The article by Varrin-Doyer et al. in this issue of Neurology® Neuroimmunology & Neuroinflammation sheds new light on this question and provides important insights that could be relevant for the treatment of MS. In elegant experiments, Varrin-Doyer et al. provide convincing evidence that treatment with laquinimod strongly ameliorates disease in 2 models of recombinant myelin oligodendrocyte glycoprotein (MOG)–induced EAE and spontaneous EAE in mice transgenic for a T-cell receptor specific for MOG3555 peptide and a MOG-specific immunoglobulin H chain knock-in (2D2 3 Th mice). In both of these models, the authors show that laquinimod treatment prevented the development of T-follicular-helper (Tfh) cells and decreased the production of MOG-specific immunoglobulinG antibodies. Interestingly, in a spontaneous model of EAE, associated with the formation of meningeal follicle-like structures that are populated by B and T cells, laquinimod therapy reduced the number and the size of these cellular aggregates. It is important to note that disease induced by recombinant MOG in this model is critically dependent on B cells and myelin antigen uptake via the B-cell receptor and presentation to autoimmune CD41 T cells. In contrast, simultaneous expression of a MOGspecific T-cell receptor and MOG-specific immunoglobulin H chain in the 2D2 3 Th mice leads to spontaneous disease replicating human neuromyelitis optica (NMO), and MOG-specific autoantibodies are pathognomonic in this condition. Thus, the results by Varrin-Doyer et al. show the efficacy of laquinimod in B-cell-driven EAE disease models with CNS pathology induced by different pathogenic effector mechanisms. The question to be asked then is how relevant is this observation for MS? B cells, one should recall, have moved in and out of the center of attention in the etiology of MS since the discovery of oligoclonal bands in the CSF of patients with MS in the 1940s. Obviously, a key role of B cells is the production of antibodies, and, consequently, detection of autoantibodies for diagnostic and prognostic purposes in patients with MS has been researched for many years. More recently, other functions of B cells have attracted attention that could account for their potential role in the etiology and pathogenesis of MS, which center on their antigen presentation and Tcell-activating properties, regulatory function (i.e., interleukin-10-producing regulatory B cells), and the enigmatic role of meningeal B-cell follicles. The rapid clinical improvement observed after B-cell depletion with rituximab and ocrelizumab in patients with MS supports the concept that B-cell functions besides antibody production may be important for modulating disease in RRMS, in particular since anti-CD20 therapy does not deplete long-living antibody-producing plasma cells, and therefore should have less of an immediate effect on potentially pathogenic autoantibodies. In contrast, the pathogenic role of autoantibodies in NMO is better established and supported by animal studies, such as spontaneous disease development in 2D2 3 Th transgenic mice. While the net effect of laquinimod in this study resulted in the impairment of the B-cell effector responses in the tested disease models, the logical next question is if this was due to direct effects of the drug on B cells, or whether this was indirectly achieved by modulating other cells. Along these lines, laquinimod inhibited
منابع مشابه
P133: Targeting NF-Κb Signaling Pathway as Potential Therapeutic with Curcumin in Treatment of Multiple Sclerosis
Curcumin is active component of turmeric and isolated from the rhizome of turmeric, a phenolic natural product. One of inflammatory disease is multiple sclerosis, a multifocal chronic autoimmune inflammatory disease of the CNS, which is also known as a perivascular demyelinating disease. Studies have been shown that neuro-inflammation can have both harmful and beneficial effects on the neuronal...
متن کاملP170: The Role of Th1 Lymphocytes in The Pathogenesis of Multiple Sclerosis (MS)
Th1 lymphocytes produce cytokines such as IL-2, IFN-γ, and TNF-α, TNF-β and GM-CSF. IFN-γ is the most important Th1 cell cytokine that induces the production of IgG, activation of macrophages, enhancing phagocytosis, and also increasing MHC class I and class II molecules. Increasing serum level of Th1 cytokines have also been observed in MS patients. It has also been prov...
متن کاملImmunomodulatory Effect of Mesenchymal Stem Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: A Review Study
Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system that may lead to disability of the patient. Current MS treatment regimens are still insufficient and research is conducted for developing more effective therapies capable of targeting neurodegeneration, inflammation, and demyelination. Recent results of experimental and clinical studies in ...
متن کاملP 51: The Role of T Helper 17 in Pathogenesis of Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) which causes demyelination of the nerve fibers. The etiology of this disease is not well understood but it is believed that T helpers play a central role in MS. Numerous findings support the view that Th17 cells play an essential role in pathogenesis of MS and IL-17 secreting T (Th17) cells have a role in infla...
متن کاملP136: The Role of Th1 Lymphocytes in the Pathogenesis of Multiple Sclerosis (MS)
Th1 lymphocytes produce cytokines such as IL-2, IFN-γ, and TNF-α, TNF-β and GM-CSF and play an important role in the increase of delaying sensitivity and defense against intracellular pathogens. IFN-γ is the most important Th1 cell cytokine that induces the production of IgG, activation of macrophages,enhancing phagocytosis, and also increasing MHC class I and class II mo...
متن کاملP 150: The Role of Blood Brain Barrier Restoration in the Multiple Sclerosis
Blood Brain Barrier (BBB) is a specialized non fenestrate barrier that formation by the endothelial cells and controls the transportation of the cells and molecules in to the brain. Reducing in function of BBB is one of disruptions in neurological diseases like multiple sclerosis. Endothelial progenitor cell (EPC) help to the BBB to control the diapedesis of inflammatory cells & molecules in to...
متن کامل